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1 Introduction

With new data from the Large Hadron Collider (LHC) imminent it would be ideal if all

possible solutions for the little hierarchy problem of the Standard Model (SM) [1] had been

classified and their LHC phenomenology at least qualitatively explored. Understandably

particle theorists have not been equal to this monumental task, and new proposals continue

to trickle in. There has also recently been some interest in exploring what the LHC could

possibly find that is not directly motivated by solving the little hierarchy problem. Exam-

ples of these “unmotivated models” include hidden valleys [2], quirks [3], and unparticles [4].

If such “unmotivated” physics was uncovered at the LHC one would have to wonder: “how

does it fit into the solution of the little hierarchy problem?” One possibility is that such

new physics is part of some sector unrelated to electroweak symmetry breaking that just

happens to have a similar mass threshold which might have its own hierarchy problem.

Here we will explore the more intriguing possibility that the “unmotivated” physics turns

out to actually be part of the solution rather than part of a new problem.

In the quirk scenario [3] there are some new fermions that couple to a new non-Abelian

gauge group referred to as infracolor. The fermions charged under this new gauge group

are called quirks in analogy to the traditional quarks. The quirks may or may not be

coupled to some or all of the SM gauge groups. How could quirks solve the little hierarchy

problem? Recall that in the folded SUSY model [5], the quadratic divergence from the top

quark is cancelled by its folded-partner, which is a spin-0 scalar not charged under the SM

SU(3)C color gauge group. From the model building perspective, one sees that if we want
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the quadratic divergence from the top quark to be cancelled by a spin-1/2 partners as in

the Little Higgs mechanism, then the new particles are not necessarily colored as in the

original little Higgs model [6, 7]. However, without a symmetry reason that requires the

cancellation of the divergence, this would not amount to a solution, but just a different

form of fine-tuning. Folded-SUSY is one possible symmetry for ensuring a cancellation

between seemingly unrelated particles. Here we will see that embedding the color and

infracolor gauge groups in a larger gauge symmetry can also ensure a cancellation between

top quark loops and “top quirk” loops in the Higgs mass calculation.

In section 2, we present the details of our five dimensional model, including the embed-

ding of color and infracolor in a larger bulk gauge group. Section 3 deals with the extended

electroweak gauge group SU(3)W×U(1)X that is needed for the little Higgs mechanism. The

extended gauge groups are broken to the SM by boundary conditions. Section 4 discusses

the mass spectrum and how it is modified by boundary terms. In section 5, we calculate the

one-loop corrections to the Higgs mass parameter in momentum-position space. Section

6 is devoted to discussing the precision electroweak constraints on our model parameters.

The oblique parameters S, T as well as Z → bLb̄L are calculated and bounds on the size of

the extra dimension are extracted. In section 7, we discuss the experimental signatures of

our top quirks in different cases. We also calculate the pair production rate for top quirks

at LHC. Our model is similar to the recently proposed dark top model [8]. The dark top

model also has a SU(6) symmetry which relates the top quark with its fermion partner.

However in that model the top quarks and top partners are put in special incomplete SU(6)

representations. Another difference is that only a SU(3)C subgroup in the SU(6) global

symmetry group is gauged. The top partners in ref. [8] are gauge neutral so that they can

be identified as dark matter.

2 The model

In this paper we consider a new variation of the little Higgs mechanism for solving the

little hierarchy problem. Because the heavy top partner in this model is not colored but

transforms under a new non-Abelian gauge group, we will call it the top quirk. The model

is five dimensional; the extra dimension has a radius R and is orbifolded by S1/Z2. The two

boundaries are located at y = 0 and y = πR. The bulk preserves an SU(6)×SU(3)W×U(1)X
gauge symmetry. The SU(6) bulk gauge symmetry relates the top quark to its partner top

quirk. The SU(3)W bulk gauge symmetry plays the same role as the SU(3)W gauge sym-

metry in the original littlest Higgs model [7]. The SU(3)W gauge symmetry is broken

twice, by the boundary condition at the y = 0 boundary and also by the vacuum expecta-

tion value (VEV) of a scalar field Φ which transforms as a fundamental representation of

SU(3)W , living on the y = πR boundary. Since the collective symmetry breaking is nonlo-

cal in this model, the one-loop corrections to the Higgs mass parameter will be insensitive

to the UV cutoff. The Higgs doublet is the pseudo-Nambu-Goldstone boson (PNGB) of

the broken SU(3)W symmetry and effectively lives on the y = πR boundary. The y = 0

boundary preserves only SU(3)C × SU(3)I × SU(2)W × U(1)Y gauge symmetry, where

SU(3)C × SU(3)I ⊂ SU(6) and SU(2)W × U(1)Y ⊂ SU(3)W × U(1)X . On the other hand,
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the y = πR boundary preserves the whole SU(6) × SU(3)W × U(1)X symmetry before the

scalar VEV is turned on.

As for the SM fermion charge assignments, let us consider the third generation first.

We put the left-handed top and bottom quarks in the bulk. They are embedded in Q
(6,3)
tL

,

which transforms as a bi-fundamental of SU(6) × SU(3)W :

SU(6) ⊃ SU(3)C × SU(3)I

Q
(6,3)
tL

= (QtL , QTL
) :











tL(++) TL(−+)

bL(++) BL(−+)

χ(−+) X(++)





















tcL(−−) T c
L(+−)

bcL(−−) Bc
L(+−)

χc(+−) Xc(−−)











(2.1)

The capital letters denote fields which transform under SU(3)I . The fields with a super-

script “c” are the chirality partner fermions in 5 dimensions and they carry the conjugate

gauge quantum numbers. The boundary conditions at the y = 0 and y = πR are indicated

in parentheses. We see that only the top-bottom quark doublet and a “top quirk” X which

transforms under SU(3)I have zero modes. In order to unify the Yukawa couplings of the

top quark and the top quirk, the right-handed top quark is chosen to live on the y = πR

boundary. It is embedded in t
(6,1)
R = {tR, TR} so it also has a quirk partner TR which

marries with X by the Φ VEV.

The right-handed bottom quark, on the other hand, lives in the bulk, because we do

not want any light quirk in the spectrum. The right-handed bottom quark is embedded

in Q
(6,3̄)
bR

:

Q
(6,3̄)
bR

= (QbR
, QBR

) :











δR(−+) ∆R(++)

vR(−+) ΥR(++)

bR(++) BR(−+)





















δc
R(+−) ∆c

R(−−)

vc
R(+−) Υc

R(−−)

bcR(−−) Bc
R(+−)











. (2.2)

The zero modes of ∆R and ΥR can obtain a large mass by marrying fields living on the

y = 0 boundary with conjugate quantum numbers and hence are removed from the low

energy spectrum. Equivalently, we could choose their boundary conditions to be (−+) so

that there are no exotic zero modes from the beginning.

The Yukawa interaction and mass term for the third generation are:

L5DY uk. = λtΦ
†(1,3̄)Q

(6,3)
tL

t̄
(6̄,1)
R δ(y − πR) + λbΦ

(1,3)Q
(6,3)
tL

Q̄
(6̄,3)
bR

δ(y − πR)

+MB(∆′
L∆̄R + Υ′

LῩR)δ(y), (2.3)

where (∆′
L, Υ′

L) is an SU(2)W doublet living on y = 0 boundary which lifts the zero modes

of ∆R, ΥR.

The SU(3)W gauge symmetry is broken by the boundary condition at y = 0 and also

by the VEV of Φ at the y = πR boundary. The Higgs field is the uneaten PNGB which

lives in Φ as long as 〈Φ〉 = f ≪ R−1. In the nonlinear sigma model notation, Φ can be

expanded as

Φ =

(

0

f

)

+ i

(

H

0

)

− 1
2f

(

0

H†H

)

+ · · · . (2.4)
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When we expand the bulk top Yukawa interaction in component fields and only consider

the zero mode contributions, we get the following expression:

LY uk. = iλtHtLtR + λtfX
cT c

R − λt

2f
XcT c

RH
†H. (2.5)

We can see that at the one-loop level the quadratically divergent contribution to the Higgs

mass-squared from the top quarks tL, tR is cancelled by that from the heavy top quirks

Xc, T c
R, which are uncolored and charged under the SU(3)I gauge group. The necessary

relation between the couplings is enforced by the bulk SU(6) gauge symmetry.

In addition to the Higgs, there is a SM singlet PNGB η which also receives its mass

from nonlocal gauge loops. It only couples to SM fermions through their mixings with

heavy fermions so it interacts with SM fields very weakly. It does not play any important

role in phenomenology [9].

We assign the SM fermions of the two light generations to the bulk. The left-handed

quark doublets and the right-handed down-type quarks are embedded in the same way as

the third generation. The right-handed up-type quarks also live in the bulk to avoid having

very light quirks associated with the first two generations.

Q
i(6,3)
uL

:











ui
L(++) U i

L(−+)

di
L(++) Di

L(−+)

χi
u(−+) Xi

U (++)





















uic
L(−−) T ic

L (+−)

dic
L (−−) Bic

L (+−)

χic
u (+−) Xic

U (−−)











(2.6)

Q
(6,3̄)
dR

:











δi
dR(−+) ∆i

dR(++)

vi
dR(−+) Υi

dR(++)

di
R(++) Di

R(−+)





















δic
dR(+−) ∆ic

dR(−−)

vic
dR(+−) Υic

dR(−−)

dic
R(−−) Dic

R(+−)











(2.7)

u
i(6,1)
R : ui

R(++) U i
R(−+) uc,i

R (−−) U c,i
R (+−) (2.8)

The Yukawa interactions for the light generations are:

λu · Φ†(1,3̄)Qi(6,3)
uL

ū
i(6̄,1)
R · δ(y − πR) + λd · Φ(1,3)Qi(6,3)

uL
Q̄

i(6̄,3)
dR

· δ(y − πR) (2.9)

+M i
X ·X ′ic

U X̄i
U · δ(y) +M i

D · (∆i′
dL∆̄i

dR + Υi′
dLῩi

dR) · δ(y),

where X ′ic
U , ∆i′

dL, Υi′
dL are fields living on y = 0 boundary which lift the extra zero modes

of Xi
U , ∆i

dR, Υi
dR.

3 Gauge fields and hypercharge

As we mentioned earlier, the bulk SU(6) gauge symmetry is broken down to SU(3)C ×
SU(3)I by the boundary conditions at y = 0 and as a result, quarks are charged under the

SU(3)C gauge group while quirks are charged under the SU(3)I . The boundary conditions

at y = 0 also break the SU(3)W × U(1)X into SU(2)L × U(1)Y . In the orbifold language,

we can assign odd parity to the 4-dimensional off-diagonal gauge fields when reflecting at
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Φ(1,3) Q
(6,3)
tL

t
(6,1)
R Q

(6,3̄)
bR

(∆′
L,Υ

′
L)

U(1)X −1
3

1
3

2
3 0 0

Table 1. the U(1)X assignment for the scalars and top multiplets

(n = 0, 1, 2 · · · ) (++) (−+) (+−) (−−)

mn
n
R

n+1/2
R

n+1/2
R

n+1
R

Table 2. mass spectrum under the boundary condition assignments

y = 0. For example, the orbifold parities at the y = 0 and y = πR fixed points of the

SU(3)W gauge fields are






(++) (++) (−+)

(++) (++) (−+)

(−+) (−+) (++)






.

As the orbifold symmetry breaking does not reduce the rank, the extra U(1)s can be re-

moved by introducing large VEVs of correspondingly charged fields at the y = 0 boundary

fields. These fields can be decoupled [10] in the limit of infinite VEVs and the Dirichlet

boundary condition is recovered for the U(1) gauge fields. For example, the U(1) corre-

sponding to the T8 generator of the SU(3)W gauge group is not broken by the orbifold.

However, it does not correspond to the correct hypercharge. To obtain the correct hyper-

charge gauge group, the extra U(1)X is needed. We can introduce a scalar field charged

under both T8 and U(1)X on the y = 0 boundary, with a large VEV which breaks them

down to the diagonal subgroup. The unbroken linear combination of T 8 and U(1)X which

gives the hypercharge Y is:

Y =
1√
3
T 8 +X, where T 8 =

1√
3

(

− 1

2
,−1

2
, 1

)

. (3.1)

The U(1)X charge assignments for the Higgs and the third generation are shown in table 1,

and the light generations are similar.

4 The mass spectrum

Before the VEV of Φ on the y = πR boundary is turned on, the mass spectrum of the bulk

fields as shown in table 2 is determined by the boundary conditions. After the third com-

ponent of Φ gets a VEV f , the back-reaction effects from the boundary fields need to be

taken into account and the mass spectrum of particles with positive boundary conditions

will be modified. We can take XL(++) and χ(−+) as examples to illustrate the mod-

ifications. Considering XL(++) first, the boundary Yukawa interaction λtΦ
†XL(++)T̄R

will mix the original KK modes [11]. We can use the equations of motion and modified

boundary conditions to obtain the new mass spectrum [12].

– 5 –
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Expanding XL(++), its five dimensional partner Xc
L(−−) and TR in KK modes:

XL =
∑

n

gn(y)χn(x), (4.1)

Xc
L =

∑

n

fn(y)ψ̄n(x), (4.2)

TR =
∑

n

hnψ̄n(x). (4.3)

The profile functions satisfy the following equations:

∂5fn(y) +mngn(y) − λfhnδ(y − L)L1/2 = 0, (4.4)

∂5gn(y) −mnfn(y) = 0. (4.5)

We need to fix two boundary conditions of fn or gn at y = 0 and y = πR, and the boundary

condition at y = πR is modified by the boundary Yukawa interaction. The two boundary

conditions are:

fn(y)|y=0 = 0, (4.6)

fn(y)|y=L = −λfL1/2hn. (4.7)

With the canonical normalization conditions,

∫ L
0 dyf2

n(y) + h2
n = 1,

∫ L
0 dyg2

n(y) = 1, (4.8)

we can solve the equations and obtain the mass spectrum:

mn · tanmnL = λ2f2L. (4.9)

For the χ(−+) case, the bulk functions are the same but the boundary conditions are

different. Let the profile of χ(−+) be fn(y) and the profile of its five dimensional partner

χc(+−) be gn, we find

gn(y)|y=0 = 0, (4.10)

fn(y)|y=L = −λfL1/2hn, (4.11)
∫ L

0
dyg2

n(y) + h2
n = 1,

∫ L

0
dyf2

n(y) = 1. (4.12)

Similar to the procedure for the (++) case, the mass spectrum of the (−+) is determined

to be:

mn · cotmnL = −λ2f2L. (4.13)

5 The Higgs potential

One way to calculate the one-loop radiative corrections to the scalar field is to sum over

all the KK modes. However, since the symmetry that protects the Higgs mass parameter

– 6 –
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is broken non-locally, it is more convenient to calculate the Higgs potential in the mixed

momentum-position space [13]. The propagators for the bulk fields can be calculated

by solving the equation: (p2 − ∂2
5)G(p, y, y′) = δ(y − y′). Putting appropriate boundary

conditions, we get:

G̃(++)
p (y, y′) = πR

(epy< + e−py<)(epy> + e2pπRe−py>)

2p(e2pπR − 1)
, (5.1)

G̃(−+)
p (y, y′) = πR

(epy< − e−py<)(epy> + e2pπRe−py>)

2p(e2pπR + 1)
. (5.2)

The five-dimensional couplings and four dimensional couplings are related by

g5 =
√
πR · g2, gx5 =

√
πR · gx, λt =

√
πR · ht. (5.3)

The mass parameters can be calculated using the Coleman-Weinberg potential [14].

The contribution from the SU(3) gauge fields is finite and positive:

m2
H |gauge =

9g2
2

4

∫ ∞

0

p3dp

8π2

2

3

[

G(++)
p (L,L) −G(−+)

p (L,L)
]

=
3g2

2

2

∫ ∞

0

p2dp

8π2
· πR
p

·
(

e2pπR + 1

e2pπR − 1
− e2pπR − 1

e2pπR + 1

)

=
21g2

2ζ(3)

128π4R2
. (5.4)

Here G
(++)
p (L,L) andG

(−+)
p (L,L) are the 5D propagators evaluated on the y = L boundary

where the Higgs lives. The contribution from the top quark triplet QtL is negative and the

contribution from top quirk triplet QTL
is positive:

m2
H |QtL

= −6h2
t

∫ ∞

0

p3dp

8π2

∞
∑

n=1

G(−+)(n−1)
p (L,L)(−h2

t f
2)n−1

[

G(++)
p (L,L) −G(−+)

p (L,L)
]

= −6h2
t

∫ ∞

0

p3dp

8π2

G
(++)
p (L,L) −G

(−+)
p (L,L)

1 +G
(−+)
p (L,L)h2

t f
2

(5.5)

m2
H |QTL

= 6h2
t

∫ ∞

0

p3dp

8π2

∞
∑

n=1

G(++)(n−1)
p (L,L)(−h2

t f
2)n−1

[

G(++)
p (L,L) −G(−+)

p (L,L)
]

= 6h2
t

∫ ∞

0

p3dp

8π2

G
(++)
p (L,L) −G

(−+)
p (L,L)

1 +G
(++)
p (L,L)h2

t f
2

(5.6)

To calculate the contribution to the Higgs mass-squared, we need to sum over all the

mass insertions in the Coleman-Weinberg potential and keep only the H†H term. The

summing process actually gives a renormalization for all the pole masses in the propagator

functions, as we discussed in the previous section, and the zero modes get obvious shifts.

The denominators in the above two expressions effectively give an infrared cut off for the

integrals. Combining the above two contributions, we have

m2
H |QtL

+m2
H |QTL

≃ 3

4π2
· h4

t · f2 · {log(4πhtf · R) − (2πhtf ·R+ 1)} (5.7)

– 7 –



J
H
E
P
0
5
(
2
0
0
9
)
0
4
5

In order for to get radiative electroweak symmetry breaking, the magnitude of this contri-

bution needs to be larger than the gauge contributions. For ht ∼ 1, this roughly requires

f ·R > 0.084.

Radiative correction from the top quarks and quirks will contribute to the quartic term

for the higgs fields. Expanding the higgs potential to H†HH†H order, we get:

λH |QtL
= 2 · h

2
t

f2

∫ ∞

0

p3dp

8π2

G
(++)
p (L,L) −G

(−+)
p (L,L)

1 +G
(−+)
p (L,L)h2

t f
2

+3 · h4
t

∫ ∞

0

p3dp

8π2

(

G
(++)
p (L,L) −G

(−+)
p (L,L)

1 +G
(−+)
p (L,L)h2

t f
2

)2

(5.8)

λH |QTL
= 2 · h

2
t

f2

∫ ∞

0

p3dp

8π2

G
(−+)
p (L,L) −G

(++)
p (L,L)

1 +G
(++)
p (L,L)h2

t f
2

+3 · h4
t

∫ ∞

0

p3dp

8π2

(

G
(−+)
p (L,L) −G

(++)
p (L,L)

1 +G
(++)
p (L,L)h2

t f
2

)2

(5.9)

λH |QtL
+ λH |QTL

≃ − 1

π2
· h4

t · {log(4πhtf · R) − (2πhtf · R+ 1)} (5.10)

For ht ∼ 1, we find λH > 0.12, where the minimal value occurs at f · R ≃ 0.16, this

translates to a physical mass for the higgs bosons mh > 121 GeV, which is larger than the

LEP 2 bound.

6 Electroweak precision constraint

The size of the extra dimension is constrained by precision electroweak measurements.

Oblique corrections to the Standard Model contained in the vacuum polarizations of gauge

bosons, which are parameterized by S and T [15, 16]. Since the third generation is treated

differently from the others, constraints from Z → bLbL also need to be considered.

The oblique parameters S, T are related to electroweak symmetry breaking. S roughly

measure the size of the breaking sector and T measure the amount of custodial symme-

try breaking. The vacuum polarizations of a gauge boson can be expanded around the

zero momentum:

Πa,a′(p2) = Πa,a′(0) + p2Π′
a,a′(0) + · · · , (6.1)

and the S and T parameters are defined in the following way:

S = 16π · (Π′
33(0) − Π′

3Q), T =
4π

C2
WS2

WM2
Z

(Π11(0) − Π33(0)). (6.2)

The vacuum polarization of gauge bosons are related to propagators from the y = L

– 8 –
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brane to the y = L brane [17],

Π11(p) = g2
2

(

v2

4

)2
{

G(++)
p (L,L) −G(++)(0)

p

}

, (6.3)

Π33(p) = (g2
2 + g2

B)

(

v2

4

)2
(

G(++)
p (L,L) −G(++)(0)

p

)

+g2
Z′

(

v2

4

)2(
1

3
− sin2 θ

)2

G(−+)
p (L,L, ), (6.4)

where θ in the above equation is the mixing angle between the T 8 and the U(1)X gauge

bosons. In the above calculations the zero mode contributions have already been subtracted

since we only need to integrate out the heavy KK modes. The Green’s functions that we

need can be calculated from eq. (5.1) and eq. (5.2):

G
(++)
p=0 (L,L) −G(++)(0)

p =
1

3
π2R2, G

(−+)
p=0 (L,L) = π2R2. (6.5)

The gauge coupling constants after the symmetry breaking and the mixing angle θ are

related to the fundamental couplings in the following way:

gB =

√
3g2gx

√

3g2
2 + g2

x

, gZ′ =
√

3g2
2 + g2

x, sin2 θ =
g2
x

3g2
2 + g2

x

. (6.6)

The U(1)X coupling gx is fixed by the measured SU(2)W coupling and the hypercharge

coupling. In this way the coupling for the heavy Z ′ is also fixed. The numerical values

are gx = 0.37, gZ′ = 1.18 and sin2 θ = 0.1. Substituting eq. (6.3) and eq. (6.4) back into

eq. (6.2) we obtain

T = − 1

α

v2

4

{

g2
B · 1

3
+ g2

Z′ ·
(

1

3
− sin2 θ

)2}

π2R2 ≃ −40.0 · v2R2, (6.7)

S = −v4

{

g2
2 + g2

B

45
+
g2
Z′

3
·
(

1

3
− sin2 θ

)2}

π5R4 ≃ −11.5 · v4R4. (6.8)

Sine the zero modes of our light fermions are flat in the fifth dimension, there are no addi-

tional contribution to the S parameter as explained in [17]. As we can see, the contribution

to the S parameter is almost negligible if we take 1/R of order a few TeV. The constraint

from the T parameter is more stringent. The current PDG fit requires T = −0.17 ± 0.12

and with S = 0, it gives a lower bound T > −0.15. For v = 246 GeV, this condition

requires the inverse radius to satisfy 1/R > 4 TeV.

Similarly, we can calculate the extra contribution to Z → bLbL by integrating out the

heavy gauge bosons. Since our fermions live in the bulk and the Higgs lives on the y = L

boundary, we need Green’s functions that propagate from an arbitrary position in the extra

dimension to the y = L boundary. When the Higgs field gets a VEV, it mixes the zero

mode of the Z gauge field with the KK modes of W 3, B and Z ′. Here Z ′ corresponds to

the massive combination of the T 8 generator of SU(3)W and the U(1)X that is broken by

the y = 0 boundary. The net contributions from integrating out heavy SU(2) gauge bosons

– 9 –
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W 3
µ and heavy hypercharge gauge bosons Bµ are zero. There is only a contribution from

the heavy Z ′ gauge bosons:

δgbL

gbL
=
g2
Z′v2

2
· Q

bL
Z′QH

Z′

QbL
Z

·
∫ L

0
dyf2

0 (y)G
(−+)
p=0 (y, L)

=
g2
Z′v2

2
· Q

bL
Z′QH

Z′

QbL
Z

·
∫ πR

0
ydy. (6.9)

In the above equation, f0(y) is the profile of the left handed bottom quark bL in the

extra dimension, and QH
Z′ , QbL

Z′ , and QbL
Z are the Z ′ and Z charges of the Higgs and the

left-handed bottom quark:

QH
Z′ =

1

6
− 1

2
sin2 θ, QbL

Z′ =
1

6
+

1

6
sin2 θ, QbL

Z = −1

2
+

1

3
sin2 θW . (6.10)

Evaluating eq. (6.9), we get δgbL/gbL = −0.17 · v2R2. LEP data requires that δgLb/gLb <

0.1% [18], which gives a constraint of 1/R > 3.2 TeV.

The 4-fermion interactions mediated by KK modes of Z ′ also give some constraints.

The most stringent constraint is from the composite scale Λ+
RL(eeuu) > 23.1 TeV [19]. It

is required that:

(

g2
Z′QeR

Z′QuL
Z′

∫ πR

0
dy1

∫ πR

y1

dy2f
2
0 (y1)f

2
0 (y2)G

(−+)
p=0 (y1, y2)

)−1

>
Λ+2

RL

4π
, (6.11)

where

QeR
Z′ =

1

3
− sin2 θ, QuL

Z′ =
1

6
+

1

6
sin2 θ (6.12)

are the Z ′ charges for the right-handed electron and the right-handed up quark. The

contributions from all of the KK modes of the Z ′ gauge bosons are included. This puts a

constraint of 1/R > 2.0 TeV.

7 Quirk phenomenology

In order to conduct an analysis of the phenomenology, we need to have some information

about the various scales in the model. We will assume the top quirks XT and TR to be the

lightest fermion in the infracolor gauge sector. The masses of the other quirks are controlled

by the size of the extra dimension and the brane mass parameters and for simplicity we can

take them to be around 10 TeV. The scale, ΛC , where the SU(3)C gauge coupling blows

up is around 100 MeV while the quirk phenomenology depends sensitively on the scale ΛI

where the SU(3)I infracolor gauge coupling blows up. The bulk SU(6) gauge dynamics

would tend to set the couplings αI(1/R) and αI(1/R) equal, but they could be different

due to the boundary gauge kinetic terms at y = 0.

To get an upper bound for the ΛI scale, we assume αI(1/R) ≤ 2 so that a perturbative

expansion still works. Running from the scale 1/R to the top quirk mass MX , only the

infracolor gluons and the top quirks contribute.

Λ =
1

R
exp

[

− 2π

αI(1/R)

3

31

]

(7.1)
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αI(1/R) 0.24 0.036 0.028 0.023

ΛI 800 GeV MeV 10 keV 100 eV

L 0.246Å 0.1µ m 1.0mm 10 m

Table 3. Different scenarios for the infracolor gauge coupling constant αI(1/R) and infracolor scale

ΛI for 1/R = 10TeV and MX = 1TeV.

To run below MX , we can decouple the top quirk so the scale ΛI is related to the scale Λ

in the following way:

(

ΛI

MX

)11

=

(

Λ

MX

)31/3

(7.2)

In table 3 we show some different values for αI(1/R) and the corresponding value of ΛI ,

assuming 1/R = 10 TeV and MX = 1TeV.

Quirk phenomenology in the detector depends sensitively on the infracolor scale ΛI ,

there are several very different possible cases [3, 20–22].

1) MeV < ΛI < MX/few: Microscopic strings. The quirk-anti-quirk pair annihilates

mainly into hidden sector glueballs, but also into two photons as well as two light SM

quarks or two leptons. The displaced leptons may provide the easiest search strategy.

2) 10 keV < ΛI <MeV: Mesoscopic strings. In this range, quirk-anti-quirk pairs can

form mesoscopic strings (flux tubes) which appear as single particle tracks in the

detector. Their ionization is different from SM particles and the mass of the bound

state differs event-by-event. Since the bound state is neutral it will not bend in the

magnetic field of the detector.

3) 100 eV < ΛI < 10 keV: Macroscopic strings. The two quirks form macroscopic

strings. The string interaction attracts the quirk and the anti-quirk towards each

other and they leave two separate anomalously curved tracks in the detector.

Since our quirks are uncolored. Their main production channel for qq̄ → XX̄ in LHC

is through s-channel exchange of photon and Z gauge bosons:

dσ

dt
=
e4Q2

X

64πs4
(

(M2
X + ŝ)2 + 2t2 − 2(M2

X − ŝ)t
)

×
{

8Q2
q +

s2(8Q2
qSW

4 − 4QqSW
2 + 1)

CW 4(M2
Z − ŝ)2

+
ŝ(M2

Z − ŝ)4Qq(1 − 4QqSW
2)

CW 2(M2
Z − ŝ)2

}

(7.3)

In the above equations, ŝ and t̂ are the Lorentz-invariant Mandelstam variables at

the parton level. At the LHC, the two quarks come from two protons, so we need to

integrate the differential cross section over parton distribution functions, Pa/P (xa, Q
2), in

each proton. The total cross section is

σ =

∫ 1

xa min
dxa

∫ 1

xb min
dxb

∫ t̂ max

t̂ min
dt̂Pa/P (xa, Q

2)Pb/P (xb, Q
2)
dσ

dt̂
(7.4)
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Figure 1. Total cross-sections vs. mass of top quirk

There are several schemes for the definition of Q2 and we take Q2 = −t̂. With the threshold

constraint ŝ = xaxbs < 4M2
X , we can fix the lower bound of the two fraction parameters

xa and xb: xa min =
4M2

X

s and xb min =
4M2

X

s
1
xa

. The upper and lower bounds of t̂ can be

determined from:

t̂min = −1

2

(

(ŝ− 2M2
X) +

√

(ŝ− 2M2
X)2 − 4M4

X

)

(7.5)

t̂max = −1

2

(

(ŝ− 2M2
X) −

√

(ŝ− 2M2
X)2 − 4M4

X

)

(7.6)

The cross section for pair production of quirks at the LHC is shown in figure 1. The

LHC will run at s = (14 TeV)2 and we will take a luminosity of 3 · 102 fb−1. For a top

quirk mass MX = 800 GeV, about one hundred events with quirk pairs can be produced.

8 Conclusion

In this paper, we have displayed a quirky little Higgs model and used a color-neutral top

quirk to cancel the quadratic divergence from the top quark loop. The top quirk and top

quark are related by an SU(6) bulk gauge symmetry in which their respective confining

gauge groups are embedded. The Higgs in this model is a pseudo-Nambu-Goldstone boson

and its mass parameter is protected by an SU(3)W symmetry. The collective breaking

of the little Higgs mechanism occurs on two separate branes, which leads to finite results

for the Higgs mass. Since the mass spectrum is mainly determined by the radius of extra

dimension, precision electroweak tests only put stringent constraints on 1/R. This is quite
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different from the original little Higgs model, there the mass of the heavy Z ′ gauge boson

is determined by the scalar VEV f , which puts tight constraints on the parameter f .

However, in our model, there is no sensitivity to the parameter f . Here we required f to

be around 800 GeV so that the magnitude of the negative radiative correction from the top

quark and top quirk loops could be larger than the gauge contribution. This allows for

radiative electroweak symmetry breaking in our model.

In our model, the top quirk is color-neutral and its main production mechanism is

through quark annihilation. For quirks with a mass less than 1TeV, there are large numbers

of events with quirk pair production at the LHC. The signature of quirk pairs in the

detector depends strongly on the infracolor gauge coupling. For stronger values of the

infracolor coupling, there will be large SM backgrounds and the signal may be very hard to

differentiate, but for weaker values there are long strings between the quirks which makes

them much easier to find.
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